Unconventional Oil and Gas Extraction and Endocrine Disruptors: Potential Implications for Human and Animal Health

Chris Kassotis, PhD Postdoctoral Researcher Duke University @cdkassotis

Outline

- + Hormones and Endocrine Disrupting Chemicals (EDCs)
- + Hydraulic Fracturing
- + EDCs Associated with an Oil and Gas Wastewater Injection Operation
- + Gestational Exposure and Health Effects in Male and Female Mice

Normal Hormonal Function

Hormone/EDC Action

1) Direct Interactions

Receptor Agonists Antagonists

2) Indirect Interactions

Receptor Expression
Hormone Levels
Receptor Response

An endocrine disruptor is "a chemical or mixture of chemicals in the environment that interferes with any aspect of hormone action." – The Endocrine Society, 2012.

Disruption of Hormone Receptors and Adverse Health Outcomes

The Hydraulic Fracturing Process

US Oil Production Boom and Bust

Fracturing Fluid Composition

Abdullah et al 2016, Tox Environ Chem

Potential Routes of Water Contamination

EDCs Used in Unconventional Oil and Gas Operations

Theo Colborn

Health Effects

Previous Work in our Lab

- + Detected greater estrogenic, anti-estrogenic and anti-androgenic activities in surface and groundwater near drilling-dense sites with history of fracking fluid spills (Kassotis et al. 2014).
- + Reported that 23 of 24 commonly-used hydraulic fracturing chemicals act as agonists and/or antagonists for five nuclear receptors (Kassotis et al. 2015).
- + Have begun to report chemicals and concentrations of oil/gas production chemicals in wastewater with Dr. Chung-Ho Lin (Kassotis et al. 2015).
- + Reported adverse health effects in male C₅₇ mice exposed prenatally to likely environmentally relevant concentrations of a fracking chemical mixture (Kassotis et al. 2015).

Reporter Gene Assay System

Reporter Gene Bioassay Activities

West Virginia Wastewater Disposal Well

Combined Surface Water Antagonist Activities WV Injection Well Site

Combined Surface Water Agonist Activities WV Injection Well Site

Water Quality Take-Homes

- + Elevated antagonist activities present in surface water downstream from oil and gas wastewater disposal operation.
 - + Geochemical and organic chemical analyses (Akob et al. and Orem et al.) demonstrate unconventional oil and gas wastewater influence on stream quality.
 - + Antagonist equivalent concentrations at levels known to result in adverse health effects in aquatic organisms.

Growing Understanding of Adverse Human and Animal Health Outcomes

- + General adverse health
 - + Increased reported health symptoms in humans (Rabinowitz et al. 2014) and dogs (Slizovskiy et al. 2015)
 - + Increased inpatient hospital utilization rates (Jemielita et al. 2015)
 - + Respiratory, GI, immune, reproductive, other issues for humans, companion and food animals, wildlife, etc. (Bamberger & Oswald)
 - + Symptom abatement for families, animals that left drilling areas (Bamberger & Oswald 2015)
- + Reproductive/developmental effects
 - + Increased rate of congenital heart defects (McKenzie et al. 2014)
 - + Increased rates of preterm birth, high risk pregnancies (Casey et al. 2015)
 - + Increased rates of low birth weight and SGA babies with greater density (Stacy et al. 2015)

Gestational Exposure in C57BL/6J Mice

 Concentrations in drinking water (each of 23 chemicals; 23-mix):

0.01, 0.1, 1.0, 10 mg/L or 3, 30, 300, 3,000 µg/kg/day in 0.2% ethanol vehicle (~500 mg/kg/day),

& 50 mg/kg/day flutamide (AR antagonist) control

Oil & Gas Operation Chemicals in 23-mix

Chemical Name	CAS#	Oil and Gas Operation Use
1,2,4-trimethylbenzene	95-63-6	Surfactant
2-(2-methoxyethoxy) ethanol	111-77-3	Biocide, Surfactant
2-ethylhexanol	104-76-7	Defoamer, Breaker
Acrylamide	79-06-1	Scale Control, Friction Reducer
Benzene	71-43-2	Paraffin Inhibitor, Surfactant
Bronopol	52-51-7	Biocide
Cumene (Isopropylbenzene)	98-82-8	Paraffin Inhibitor
Diethanolamine	111-42-2	Friction Reducer, Corrosion Inhibitor
Dimethylformamide	68-12-2	Corrosion Inhibitor
Ethoxylated nonylphenol	9016-45-9	Surfactant, Corrosion Inhibitor
Ethoxylated octylphenol	9036-19-5	Surfactant, Corrosion Inhibitor
Ethylbenzene	100-41-4	Non-emulsifier, paraffin inhibitor
Ethylene glycol	107-21-1	Crosslinker, Friction reducer
Ethylene glycol monobutyl ether (2-BE)	111-76-2	Surfactant, Foamer
Methyl-4-isothiazolin	2682-20-4	Biocide
Naphthalene	91-20-3	Surfactant, Acid Inhibitor
Phenol	108-95-2	Resin-coating for proppants
Propylene glycol	57-55-6	Gellant, Breaker
Sodium tetraborate decahydrate	1303-96-4	Crosslinker
Styrene	100-42-5	Proppant
Toluene	108-88-3	Non-emulsifier, paraffin inhibitor
Triethylene glycol	112-27-6	Biocide, Dehydration
Xylenes	1330-20-7	Non-emulsifier, Breaker

Altered Body and Organ Weights in Developmentally Exposed Mice

Ground water directly below surface spills, *Gross et al* Kassotis et al 2015, *Endocrinology*

Kassotis et al 2016b, in prep

Adverse Reproductive Health Outcomes in Developmentally Exposed Male Mice

Disrupted Heart Development in Developmentally Exposed Female Mice

Suppressed Pituitary Hormones in Developmentally Exposed Female Mice

Disrupted Folliculogenesis in Developmentally Exposed Female Mice

Overall Take-Homes

- + Some chemicals used in and/or produced by oil and natural gas operations can act as nuclear receptor agonists and antagonists.
- + Humans and animals are likely exposed to these chemicals via multiple routes in drilling-dense areas
 - + <u>Drinking water</u>, inhalation, and dermal absorption.
- + Injection sites may represent another route through which oil and gas operations may influence EDC contributions to surface/groundwater.
- + Gestational exposure to a mixture of oil and gas operation chemicals at likely environmentally-relevant concentrations resulted in adverse health outcomes in C₅₇ mice.
 - + Increased body weights, reduced sperm counts in males.
 - + Increased body weights, suppressed pituitary hormones, altered folliculogenesis in females.

Acknowledgements

Research Support:

PhD Committee: Susan Nagel,

Fred vom Saal, Don Tillitt, Wade Welshons

Nagel Lab Members: Kara Klemp, Victoria Balise, Angela Meng, Chiamaka Isiguzo, Michelle Williams, Jenn Cornelius-Green, Annie Maas, Katelyn Cinnamon, Sierra Baxter, and Leighton McCabe.

Collaborators: [MU] Chung-Ho Lin and Danh Vu, Erma Drobnis, Wade Davis; [JHU] Andrew Wolfe; [UMASS] Tom Zoeller; [UF] John Bromfield; [USGS] Denise Akob, Isabelle Cozzarelli, Adam Mumford, Bill Orem.

Funding Sources:

EPA STAR Pre-Doctoral Fellowship Passport Foundation University of Missouri Crowdfunding campaign via Experiment.com

Nagel & vom Saal Labs - June 2012

Nagel Lab – May 2013